





### 1 Deliverable administrative information

| Deliverable number  | D2.3                                                                                                                            |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Deliverable title   | Update protocol definition                                                                                                      |
| Dissemination level | Public                                                                                                                          |
| Submission deadline | 31/01/2024                                                                                                                      |
| Version number      | V1.0                                                                                                                            |
| Authors             | Jordan Sautreau (Trialog)<br>Anais Walle (Trialog)                                                                              |
| Internal reviewers  | Yannick Huc (Trialog) Kevin Haesevoets (Enervalis) Eric Smets (Enervalis) Jelle Meersmans (Enervalis) Didier Bollen (GoodMoovs) |
| Document approval   | Baerte de Brey (ElaadNL)                                                                                                        |

#### 1.1 Legal Disclaimer

SCALE is funded by the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101056874. The views represented in this document only reflect the views of the authors and not the views of the European Commission. The dissemination of this document reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.



# 2 Project Executive Summary

SCALE (Smart Charging Alignment for Europe) is a three-year Horizon Europe project that aims at preparing EU cities for mass deployment of electric vehicles and the accompanying smart charging infrastructure.

# 3 SCALE partners

List of participating cities:

- Oslo (NO)
- Rotterdam & Utrecht (NL)
- Eindhoven (NL)
- Toulouse (FR)
- Greater Munich Area (GER)
- Budapest & Debrecen (HU)
- Gothenburg (SE)

#### List of partners:

- (Coordinator) STICHTING ELAAD NL
- POLIS PROMOTION OF OPERATIONAL LINKS WITH INTEGRATED SERVICES, ASSOCIATION INTERNATIONALE POLIS BE
- GoodMoovs NL
- Rupprecht Consult Forschung & Beratung GmbH RC DE
- Trialog FR
- WE DRIVE SOLAR NL BV NL
- UNIVERSITEIT UTRECHT NL
- LEW Verteilnetz GmbH DE
- BAYERN INNOVATIV BAYERISCHE GESELLSCHAFT FUR INNOVATION UND WISSENSTRANSFER MBH DE
- ABB BV NL
- Enervalis BE
- GEMEENTE UTRECHT NL
- Equigy B.V. NL
- SONO MOTORS GMBH DE
- Meshcrafts As (Current) NO
- Research Institutes of Sweden AB SE
- ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH) GR



- FIER Automotive FIER NL
- Emobility Solutions Kft. HU
- Serviced Office Belbuda Kft HU
- Enedis FR
- L'ASSOCIATION EUROPEENNE DE LA MOBILITE ELECTRIQUE (AVERE) BE
- Norsk elbilforening NO
- VDL ENABLING TRANSPORT SOLUTIONS BV NL
- Urban Electric Mobility Initiative UEMI DE
- Renault FR
- Chalmers University SE
- Polestar SE
- Hyundai NL NL

#### Social Links:



twitter.com/scaleproject\_



www.linkedin.com/company/ scale-project-smart-charging-alignment-for-europe



www.youtube.com/channel/UC1HVFu5uJPCNSV96b3l\_rcg

For further information please visit WWW.SCALE-HORIZON.EU



# 4 Deliverable executive summary

#### 4.1 Key words

Electric vehicles, smart charging, bidirectional charging, V2X, interoperability, flexibility, protocols

#### 4.2 Summary

To be able to deliver energy services through charging session optimization, the seamless transfer of data between key actors is essential in optimizing energy services. Efficient communication and data exchange among electric vehicles (EVs), charging infrastructure providers, grid operators, and energy service providers enable real-time monitoring and control of energy consumption. This data-driven connectivity allows for load balancing, demand response, and predictive maintenance, enhancing the overall reliability and performance of the electric grid.

The strong need for connectivity between several actors shows the importance of interoperability. To foster a thriving and open market within the e-mobility sector, it is imperative that key actors embrace the use of open protocols over proprietary implementations. This approach not only promotes a more interconnected market but also encourages healthy competition and innovation. By avoiding proprietary implementations, stakeholders contribute to the creation of a level playing field, preventing the formation of closed ecosystems that limit consumer choice and stifle innovation.

To preserve the current interoperability between the actors while implementing new energy services, this document provides in section 8 an analysis of the existing and upcoming protocols regarding the required data to enable new energy services. The analysis of existing protocols helps in understanding the current state of interoperability and identifies areas where standardization has been successful. However, it also sheds light on potential limitations or gaps that might hinder seamless communication between different systems.

The examination of upcoming protocols enables stakeholders to align their strategies with evolving industry standards and prepare for future challenges.

To contribute to the standardization process and to ease the implementation of the service in the different pilots, extensions of existing and upcoming protocols are proposed in section 9. The identification of gaps and how to fill them in upcoming and existing protocols allows for early intervention into the standardization committees and speed up the adoption of protocols covering all expected use cases. This approach not only maximizes the efficiency of data transfer but also encourages a more interconnected environment for the benefit of all actors in the ecosystem.

Then, the extended protocols shall be used to enable the energy services experimented within SCALE project. To select the most relevant technical solution, section 10 lists the protocols that can be used to propose V1G services or V2G services.

Finally, this report explicits in section 11 the data journey within the ecosystem. Thanks to the flow diagrams provided, each actor can clearly understand which data it should process and apply the relevant protocol to connect to other actors and fulfill data privacy and cybersecurity requirements.



| 1  | DELIVERABLE ADMINISTRATIVE INFORMATION                       | 1  |
|----|--------------------------------------------------------------|----|
| 2  | PROJECT EXECUTIVE SUMMARY                                    | 2  |
| 3  | SCALE PARTNERS                                               | 2  |
| 4  | DELIVERABLE EXECUTIVE SUMMARY                                | 4  |
| 5  | LIST OF ABBREVIATIONS AND ACRONYMS                           | 6  |
| 6  | PURPOSE OF THE DELIVERABLE                                   | 7  |
| 7  | STRUCTURE OF THE DELIVERABLE & LINK WITH OTHER WORK PACKAGES | 8  |
| 8  | PROTOCOLS GAP ANALYSIS                                       | ç  |
| 9  | PROTOCOLS EXTENSIONS                                         | 35 |
| 10 | REQUIRED PROTOCOLS FOR ENERGY SERVICES                       | 37 |
| 11 | DATA JOURNEY                                                 | 40 |
| 12 | CONCLUSIONS                                                  | 46 |
| 13 | APPENDIX                                                     | 47 |



# 5 List of abbreviations and acronyms

| Acronym | Meaning                             |
|---------|-------------------------------------|
| ВРТ     | Bidirectional Power Transfer        |
| СРО     | Charge Point Operator               |
| DSO     | Distribution Grid Operator          |
| EMS     | Energy Management System            |
| eMSP    | e-Mobility Service Provider         |
| EV      | Electric Vehicle                    |
| EVSE    | Electric Vehicle Supply Equipment   |
| FSP     | Flexibility Service Provider        |
| JSON    | JavaScript Object Notation          |
| OCA     | Open Charge Alliance                |
| ОСРІ    | Open Charge Point Interface         |
| ОСРР    | Open Charge Point Protocol          |
| OEM     | Original Equipment Manufacturer     |
| SCALE   | Smart Charging Alignment for Europe |
| SCSP    | Smart Charging Service Provider     |
| SoC     | State of Charge                     |
| TSO     | Transmission System Operator        |
| V2G     | Vehicle-to-Grid                     |
| V2X     | Vehicle-to-Everything               |
| XML     | Extensible Markup Language          |



# 6 Purpose of the deliverable

#### 6.1 Attainment of the objectives and explanation of deviations

The objectives related to this deliverable have been achieved in full and as scheduled.

#### 6.2 Intended audience

#### 6.2.1 SCALE Consortium partners

The primary audience for this deliverable is the project partners involved in the development and implementation of V2X services. They can utilize the deliverable to select and implement protocols for their specific use cases.

#### 6.2.2 E-mobility actors

The document, featuring a comprehensive gap analysis of existing protocols and proposing extensions to cover all use cases, greatly benefits e-mobility actors. By clearly outlining the limitations and opportunities within current protocols, e-mobility actors get valuable insights into how existing limitations may impact their operations. The sequence diagrams depicting data exchanges facilitate a deeper understanding of the interactions between various components. So, they can make informed decisions, choose protocols that align with their specific needs, and strategize for more efficient and seamless electric vehicle charging experiences.

#### 6.2.3 Smart charging service providers

Smart charging services providers benefit from this report's insights and proposed extensions. The gap analysis informs them about the existing limitations in protocols that may impact the delivery of their services. The sequence diagrams offer a detailed view of data exchanges, enabling providers to streamline their offerings and enhance the user experience. With this information, they can make informed decisions on protocol selection, optimize their service delivery, and contribute to the development of optimized charging solutions.

#### 6.2.4 Standardization bodies

This document provides standardization bodies with a comprehensive overview of existing gaps in protocols and offers well-reasoned extensions supported by sequence diagrams. This information incites standardization bodies to refine and update protocols, shaping an interoperable ecosystem. By addressing identified gaps, standardization bodies can contribute to the evolution of robust industry standards, promoting innovation and ensuring a sustainable framework for the diverse needs of e-mobility, grid operators, and smart charging services providers.



# 7 Structure of the deliverable & link with other work packages

In this analysis, our initial step involves listing all protocols currently available and those anticipated soon. This inventory lays the foundation for our investigation into the e-mobility ecosystem's communication frameworks. The information gathered will then be closely aligned with the findings documented in D2.2, establishing a link between protocol definitions and the analytical insights provided in our data analysis report.

Building on this link, our next objective is to identify gaps within the existing protocols. By mapping the content from our analysis in D2.2 against the defined protocols, we can pinpoint areas where information may be lacking or insufficient. This thorough examination sets the stage for proposing solutions to fill these identified gaps, creating a more exhaustive set of communication protocols within the e-mobility domain.

As part of our recommendations, we will provide guidance on selecting the most suitable protocols for specific use cases. This aims to assist stakeholders in making informed decisions, ensuring that the chosen protocols align seamlessly with the requirements of each unique scenario.

To enhance the practical application of our work, we will outline the data flow between different actors within the e-mobility ecosystem. This view highlights the roles of each actor and clarifies how data is handled at various stages of the communication process. This clarity in data flow is helpful for stakeholders aiming to understand the intricacies of information exchange within the ecosystem.

The outcomes of this work will be used as input for task T2.4. The insights gained from protocol definition, gap identification, and proposed solutions will serve as a roadmap for future developments, ensuring that advancements in the e-mobility communication landscape are guided by a thorough understanding of existing protocols and their potential enhancements.



# 8 Protocols gap analysis

In this section, we aim to establish a robust foundation for the selection of protocols tailored to specific services. The objective is to conduct a comprehensive gap analysis, comparing the data requirements outlined in D2.2 with the information currently available in existing protocols. This examination serves as a pivotal step in our overarching mission to identify and recommend protocols that align seamlessly with the specified service criteria. Through a systematic approach, we pinpoint gaps between the required data elements and the provisions within various protocols. Then we are committed to proposing pragmatic solutions to bridge these discerned gaps effectively in section 11.

#### 8.1 System Architecture

In the dynamic landscape of e-mobility, the following schema displaying the ecosystem architecture helps to understand the intricate connections between various actors. The schema delineates the essential links, showcasing the seamless integration of protocols across different stages. These protocols play a crucial role in orchestrating communication and data exchange between EVs, charging stations, and the grid. From the initial connection phase to the actual charging process and grid interaction, each link in the chain requires standardized protocols for efficient and secure operations.

To define and select the relevant protocols, the source and the destination of an information shall be known. Depending on the control topology, which actor acts as a FSP, this destination may vary. The FSP can be different actors: EMS, CPO, EV, ... As the SCALE system architecture aims to support different control topologies while making switching FSPs as seamless as possible for customers, the FSP role should be separated from the existing roles known to the e-mobility eco-system.

The following diagram represents the generic architecture in SCALE project. Based on this diagram, all the links and their associated protocol shall be explicated to perform a gap analysis.





First, the link between the EV and the EVSE is based on ISO 15118. ISO 15118 is an international standard that focuses on the communication between electric vehicles (EVs) and charging stations, to standardize the protocols for electric vehicle charging. Specifically, ISO 15118 addresses the communication between the EV and the charging station, covering aspects such as authentication methods, charge parameters, both AC and DC charging, and secure data exchange. In this document we will focus on the ISO 15118-2 and ISO 15118-20 as they describe which and how data can be transmitted on this link.

Secondly, we will use the open protocol OCPP to communicate between charging stations and supervision systems: EVSE and CPO, and EVSE and EMS. Open Charge Point Protocol (OCPP) is an open-source communication protocol specifically designed for managing and monitoring charging stations. Developed to promote interoperability and standardization in the EV charging industry, OCPP facilitates communication between charging stations and central management systems and energy management systems.

Finally, OCPI is used to connect the CPO to the SCSP, the CPO to the eMSP, and the EM to the SCSP. The Open Charge Point Interface (OCPI) is a protocol designed for the interoperability of electric vehicle (EV) charging networks. Unlike specific protocols tailored for communication between charging stations and supervision systems (e.g., OCPP), OCPI focuses on enabling communication and data exchange between different, independently operated EV charging networks.

To be noted that interactions with other actors linked to the energy sector (DSO, TSO, BRP...) have not been considered for this analysis as these interactions are already addressed by other European project focused on flexibility: protocol selection will be done according to recommendations provided by these projects or based on recommendations from standardization work.



#### 8.2 EV – EVSE Communication

#### 8.2.1 ISO 15118-2

#### 8.2.1.1 Data Coverage

For ISO 15118-2, the request messages are sent by the EV to the EVSE, and the response messages are sent by the EVSE to the EV. In the following table, the message name is written in bold. Those ending by Req are requests, those ending by Res are responses.

The version used for this analysis is ISO 15118-2 Ed1 released in 2014.

|                 | Data Object                  | Protocol Message                                                                                                   | Unit<br>/Format | Remark                                                              |
|-----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|
| Charging        | EVSE ID                      | SessionSetupRes::EVSEID                                                                                            |                 |                                                                     |
| Station<br>(CS) | Maximum<br>Charging<br>Power | ChargeParameterDiscoveryRes::DC_EVSEChargeParameter::EVSEMaximumPowerLimit CurrentDemandRes::EVSEMaximumPowerLimit | W               | Only sent in<br>DC                                                  |
|                 | Active Power                 | CurrentDemandRes::EVSEPresentVoltage CurrentDemandRes::EVSEPresentCurrent                                          | W               | Not directly available but can be computed based on voltage current |
|                 | Session ID                   | SessionSetupRes::Header::SessionID                                                                                 |                 |                                                                     |



|      | Composite<br>Active<br>Charging<br>Profile | ChargeParameterDiscoveryRes::SAScheduleList                                                                                       |         |                               |
|------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|
|      | Charged<br>Energy                          | MeteringReceiptReq::MeterInfo::MeterReading                                                                                       | Wh      |                               |
| EV   | Maximum<br>Charging<br>Power               | CurrentDemandReq::EVMaximumPowerLimit ChargeParameterDiscoveryReq::DC_EVChargeParameter::EVMaximumPowerLimit t                    | Wh      |                               |
|      | Present SoC                                | CableCheckReq::DC_EVStatusType::EVRESSSOC                                                                                         | Percent |                               |
|      | Target<br>Energy<br>Request                | ChargeParameterDiscoveryReq::DC_EVChargeParameterType::EVEnergyRequest                                                            | Wh      |                               |
| User | UserID                                     | PaymentDetailsReq::eMaid                                                                                                          |         | Only<br>available with<br>PnC |
|      | Departure<br>Time                          | ChargeParameterDiscoveryReq::AC_EVChargeParameter::DepartureTime ChargeParameterDiscoveryReq::DC_EVChargeParameter::DepartureTime |         | Optional<br>Field             |
|      | Maximum<br>SoC                             | ChargeParameterDiscoveryReq::DC_EVChargeParameter::FullSOC                                                                        |         |                               |



| Minimum<br>Green Level | ChargeParameterDiscoveryRes::SAScheduleList::SAScheduleListType::SAScheduleTupleType::SalesTariffType::SalesTariffEntryType::ConsumptionCostType::CostTy | Optional<br>Field |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                        | pe::costKind                                                                                                                                             |                   |

#### 8.2.1.2 Gap analysis

The gap analysis reveals a comprehensive coverage of smart charging needs within the existing protocol. However, the analysis also brings to light some noteworthy gaps that require attention to enhance the protocol's functionality and adaptability:

- Maximum and minimum energy requests from the EV, major factors in optimizing charging processes.
- The minimum and maximum state of charge requested by the EV, useful for ensuring the longevity of electric vehicle batteries and maintaining optimal performance.
- Maximum charging power supported by the EVSE in AC Charging.

In addition to addressing the identified gaps, it is essential to understand that the protocol allows for optional parameters. It introduces a need for careful consideration during implementation. The optional nature of certain parameters underscores the importance of a thoughtful approach by implementers. The implementation specifications for the pilots shall clearly articulate the usage of optional to avoid interoperability issues. So, the usage of the following parameters shall be explicitly defined:

• Departure Time to ensure that user mobility needs are covered.

Finally, the analysis shows the absence of V2X parameters in ISO 15118-2. However, this was expected as V2X support was added to ISO 15118-20 and is not meant to be supported by ISO 15118-2.



#### 8.2.2 ISO 15118-20

For ISO 15118-20, the request messages are sent by the EV to the EVSE, and the response messages are sent by the EVSE to the EV. In the following table, the message name is written in bold. Those ending by Req are requests, those ending by Res are responses.

The version used for this analysis is ISO 15118-20 Ed1 released in 2022.

#### 8.2.2.1 Data coverage

|                             | Data Object                  | Protocol Message                                                                                                                                                                   | Unit<br>/Format              | Remark     |
|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| Charging<br>Station<br>(CS) | EVSE ID                      | SessionSetupRes::EVSEID                                                                                                                                                            | 36 bytes,<br>ASCII<br>String |            |
|                             | Maximum<br>Charging<br>Power | AC_ChargeParameterDiscoveryRes::AC_CPDResEnergyTransferModeType::EVS EMaximumChargePower  DC_ChargeParameterDiscoveryRes::DC_CPDResEnergyTransferModeType::EVS EMaximumChargePower | W                            |            |
|                             | Active Power                 | <b>AC_ChargeParameterDiscoveryRes</b> ::AC_CPDResEnergyTransferModeType::EVS EPresentActivePower                                                                                   | W                            | Only in AC |
|                             | Session ID                   | SessionSetupRes::Header::SessionID                                                                                                                                                 |                              |            |
|                             | Composite<br>Active          | ScheduleExchangeRes::Scheduled_SEResControlModeType::ScheduleTuple                                                                                                                 |                              |            |



|    | Charging<br>Profile          |                                                                                                                                                                                                                                                                                                                                          |    |
|----|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Charged<br>Energy            | MeteringConfirmationReq::MeterInfoType::ChargedEnergyReadingWh                                                                                                                                                                                                                                                                           | Wh |
|    | Discharged<br>Energy         | MeteringConfirmationReq::MeterInfoType::BPT_DischargedEnergyReadingWh                                                                                                                                                                                                                                                                    | Wh |
| EV | Maximum<br>Charging<br>Power | DC_ChargeParameterDiscoveryReq::DC_CPDReqEnergyTransferModeType::EV MaximumChargePower AC_ChargeParameterDiscoveryReq::AC_CPDReqEnergyTransferModeType::EVM aximumChargePower DC_ChargeLoopReq::BPT_Dynamic_DC_CLReqControlModeType::EVMaximumChargePower AC_ChargeLoopReq::BPT_Dynamic_AC_CLReqControlModeType::EVMaximumChargePower    | W  |
|    | Minimum<br>Charging<br>Power | DC_ChargeParameterDiscoveryReq::DC_CPDReqEnergyTransferModeTy pe::EVMinimumChargePower  AC_ChargeParameterDiscoveryReq::AC_CPDReqEnergyTransferModeTy pe::EVMinimumChargePower  DC_ChargeLoopReq::BPT_Dynamic_DC_CLReqControlModeType::EVMinimumChargePower  AC_ChargeLoopReq::BPT_Dynamic_AC_CLReqControlModeType::EVMinimumChargePower | W  |



| Maximum<br>Discharging<br>Power | DC_ChargeParameterDiscoveryReq::BPT_DC_CPDReqEnergyTransferModeType ::EVMaximumDischargePower  AC_ChargeParameterDiscoveryReq::BPT_AC_CPDReqEnergyTransferModeType: :EVMaximumDischargePower  DC_ChargeLoopReq::BPT_Dynamic_DC_CLReqControlModeType::EVMaximumDischargePower  AC_ChargeLoopReq::BPT_Dynamic_AC_CLReqControlModeType::EVMaximumDischargePower | W       |                                       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|
| Minimum<br>Discharging<br>Power | DC_ChargeParameterDiscoveryReq::BPT_DC_CPDReqEnergyTransferModeType ::EVMinimumDischargePower AC_ChargeParameterDiscoveryReq::BPT_AC_CPDReqEnergyTransferModeType ::EVMinimumDischargePower DC_ChargeLoopReq::BPT_Dynamic_DC_CLReqControlModeType::EVMinimumDischargePower AC_ChargeLoopReq::BPT_Dynamic_AC_CLReqControlModeType::EVMinimumDischargePower    | W       |                                       |
| Present SoC                     | AC_ChargeLoopReq::DisplayParametersType::PresentSOC DC_ChargeLoopReq::DisplayParametersType::PresentSOC                                                                                                                                                                                                                                                      | Percent | Shall not be used to control a charge |
| Minimum<br>Energy<br>Request    | AC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMinimumEnergyRequest AC_ChargeLoopReq::Scheduled_AC_CLReqControlModeType::EVMinimumEnergyRequest DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMinimumEnergyRequest                                                                                                                                    | Wh      |                                       |



|                              | est  DC_ChargeLoopReq::Scheduled_DC_CLReqControlModeType::EVMinimumEnergy Request  ScheduleExchangeReq::Dynamic_SEReqControlModeType::EVMinimumEnergyRe quest  ScheduleExchangeReq::Scheduled_SEReqControlModeType::EVMinimumEnergy Request                                                                                                                                                                                                                                                                                      |    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Target<br>Energy<br>Request  | ScheduleExchangeReq::Dynamic_SEReqControlModeType::EVTargetEnergyRequest ScheduleExchangeReq::Scheduled_SEReqControlModeType::EVTargetEnergyRequest AC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVTargetEnergyRequest AC_ChargeLoopReq::Scheduled_AC_CLReqControlModeType::EVTargetEnergyRequest DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVTargetEnergyRequest DC_ChargeLoopReq::Scheduled_DC_CLReqControlModeType::EVTargetEnergyRequest DC_ChargeLoopReq::Scheduled_DC_CLReqControlModeType::EVTargetEnergyRequest | Wh |
| Maximum<br>Energy<br>Request | ScheduleExchangeReq::Dynamic_SEReqControlModeType::EVMaximumEnergyRequest ScheduleExchangeReq::Scheduled_SEReqControlModeType::EVMaximumEnergyRequest AC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMaximumEnergyRequest AC_ChargeLoopReq::Scheduled_AC_CLReqControlModeType::EVMaximumEnergyRequest DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMaximumEnergyRequest                                                                                                                                                  | Wh |

-

17



|      |                             | est  DC_ChargeLoopReq::Scheduled_DC_CLReqControlModeType::EVMaximumEnerg yRequest                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |
|------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
|      | V2X Warranty<br>Constraints | ScheduleExchangeReq::Dynamic_SEReqControlModeType::EVMaximumV2XEner gyRequest  AC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMaximumV2XEnergy Request  DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMaximumV2XEnergy Request  ScheduleExchangeReq::Dynamic_SEReqControlModeType::EVMinimumV2XEnerg yRequest  AC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMinimumV2XEnergyRequest  DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMinimumV2XEnergyRequest  DC_ChargeLoopReq::Dynamic_CLReqControlModeType::EVMinimumV2XEnergyRequest | W       |          |
|      | Discharging capable         | ServiceDiscoveryReq::SupportedServiceIDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |
| User | Departure<br>Time           | ScheduleExchangeReq::Dynamic_SEReqControlModeType::DepartureTime ScheduleExchangeReq::Scheduled_SEReqControlModeType::DepartureTime ScheduleExchangeRes::Dynamic_SEResControlModeType::DepartureTime ScheduleExchangeRes::Scheduled_SEResControlModeType::DepartureTime DC_ChargeLoopReq::Dynamic_DC_CLReqControlModeType::DepartureTime DC_ChargeLoopRes::Dynamic_DC_CLResControlModeType::DepartureTime AC_ChargeLoopReq::Dynamic_AC_CLReqControlModeType::DepartureTime AC_ChargeLoopRes::Dynamic_AC_CLResControlModeType::DepartureTime           | Seconds | Optional |



| Minimum SoC            | ScheduleExchangeReq::Dynamic_SEReqControlModeType::MinimumSOC ScheduleExchangeRes::Dynamic_SEResControlModeType::MinimumSOC AC_ChargeLoopReq::DisplayParametersType::MinimumSOC DC_ChargeLoopReq::DisplayParametersType::MinimumSOC AC_ChargeLoopRes::Dynamic_AC_CLResControlModeType::MinimumSOC DC_ChargeLoopRes::Dynamic_DC_CLResControlModeType::MinimumSOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Percent | Dynamic<br>mode only                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|
| Target State of Charge | ScheduleExchangeReq::Dynamic_SEReqControlModeType::TargetSOC ScheduleExchangeRes::Dynamic_SEResControlModeType::TargetSOC AC_ChargeLoopReq::DisplayParametersType::TargetSOC DC_ChargeLoopReq::DisplayParametersType::TargetSOC AC_ChargeLoopRes::Dynamic_AC_CLResControlModeType::TargetSOC DC_ChargeLoopRes::Dynamic_DC_CLResControlModeType::TargetSOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Percent | Dynamic<br>mode only                           |
| Maximum<br>SoC         | AC_ChargeLoopReq::DisplayParametersType::MaximumSOC DC_ChargeLoopReq::DisplayParametersType::MaximumSOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percent | Shall not be<br>used to<br>control a<br>charge |
| Minimum<br>Green Level | <b>ScheduleExchangeReq</b> ::EVEnergyOfferType::EVAbsolutePriceSchedule::EVAbsolutePriceScheduleType::EVPriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::PriceRuleStackListType::Pric |         |                                                |

4



#### 8.2.2.2 Gap analysis

The gap analysis reveals a comprehensive coverage of smart charging and V2X needs within the existing protocol. However, the analysis also brings to light some noteworthy gaps that require attention to enhance the protocol's functionality and adaptability:

- Grid codes to ensure compliance with local grid codes based on local grid measurements.
- V2X state of health to have information related to the remaining budget from the absolute V2X warranty constraints so that they can be included in the optimization problem.
- Round trip efficiency to avoid injection that can result in low charging power whereby the round-trip efficiency of the on-board inverter could be
  low.
- Allowance to discharge to get the explicit consent of the driver to perform bidirectional charging.
- EVSE active power in DC Charging.

The usage of the following parameters shall be explicitly defined in specifications of the different pilots:

Departure Time to ensure that user mobility needs are covered.



#### 8.3 EVSE – CPO/EMS Communication

#### 8.3.1 OCPP 1.6

#### 8.3.1.1 Data Coverage

The version used for this analysis is OCPP 1.6 edition 2 released in 2017.

|                             | Data<br>Object                     | Protocol Message                                                                                                                                                            | Unit<br>/Format | Sender | Remark |
|-----------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|
| Charging<br>Station<br>(CS) | Active<br>Power                    | <b>MeterValues.Req</b> ::MeterValue::SampledValue::Measurand::Power.Active.Import <b>StopTransactionReq</b> ::MeterValue::SampledValue::Measurand::Power.Active.Import      | W               | CS     |        |
|                             | Composit e Active Charging Profile | SetChargingProfile.Req::csChargingProfiles                                                                                                                                  |                 | CSMS   |        |
|                             | Charged<br>Energy                  | MeterValues.Req::MeterValue::SampledValue::Measurand::Energy.Active.Import.Register StopTransaction.Req::MeterValue::SampledValue::Measurand::Energy.Active.Import.Register | Wh              | CS     |        |
| EV                          | Present<br>SoC                     | MeterValues.Req::MeterValue::SampledValue::Measurand::SoC StopTransactionReq::MeterValue::SampledValue::Measurand::SoC                                                      | Percent         | CS     |        |



#### 8.3.1.2 Gap analysis

The analysis shows the absence of V2X parameters and a restricted set of smart charging data in OCPP 1.6. However, this was expected as the support of these features have been added to newer versions of the protocol and are not meant to be supported by this version according to OCA.

#### 8.3.2 OCPP 2.0.1

WWW.SCALE.EU

#### 8.3.2.1 Data Coverage

The version used for this analysis is OCPP 2.0.1 edition 2 released in 2022.

|                 | Data<br>Object                              | Protocol Message                                                                                                                                                                               | Unit<br>/Format | Sender | Remark |
|-----------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|
| Charging        | EVSE ID                                     | GetVariablesResponse with SecurityCtrlr::Identity variable                                                                                                                                     |                 | CS     |        |
| Station<br>(CS) | Maximum<br>Charging<br>Power                | Use PhysicalComponents  GetVariablesResponse with ChargingStation:: Power(MaxLimit) variable                                                                                                   | VV              | CS     |        |
|                 | Active<br>Power                             | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::Power.Active.Import TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::Power.Active.Import | W               | CS     |        |
|                 | Composit<br>e Active<br>Charging<br>Profile | SetChargingProfileRequest::ChargingProfileType                                                                                                                                                 |                 | CSMS   |        |



|      | Charged<br>Energy            | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Import.Register TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Import.Register                                         | Wh      | CS |
|------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|
| EV   | Maximum<br>Charging<br>Power | <b>NotifyEVChargingNeedsRequest</b> ::ChargingNeedsType::DCChargingParameters Type::evMaxPower                                                                                                                                                             | Wh      | CS |
|      | Present<br>SoC               | NotifyEVChargingNeedsRequest::ChargingNeedsType::DCChargingParameters Type::stateOfCharge MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumTy pe::SoC TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEn umType::SoC | Percent | CS |
|      | Target<br>Energy<br>Request  | <b>NotifyEVChargingNeedsRequest</b> ::ChargingNeedsType::DCChargingParameters Type::energyAmount                                                                                                                                                           | Wh      | CS |
| User | User ID                      | AuthorizeRequest::idToken                                                                                                                                                                                                                                  |         |    |
|      | Departure<br>Time            | NotifyEVChargingNeedsRequest::ChargingNeedsType::departureTime                                                                                                                                                                                             | RFC3339 | CS |
|      | Maximum<br>SoC               | NotifyEVChargingNeedsRequest::ChargingNeedsType::fullSoC                                                                                                                                                                                                   | Percent | CS |
|      |                              |                                                                                                                                                                                                                                                            |         |    |



| Minimum<br>Green | <b>ReportChargingProfilesRequest</b> ::ChargingProfileType::ChargingScheduleType::SalesTariffType::SalesTariffEntryType::ConsumptionCostType::CostType::costKin |   | CS |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| Level            | d                                                                                                                                                               | е |    |

#### 8.3.2.2 Gap analysis

The gap analysis reveals a comprehensive coverage of smart charging needs within the existing protocol. However, the analysis also brings to light some noteworthy gaps that require attention to enhance the protocol's functionality and adaptability:

- EV minimum charge power to adapt the power delivered by the EVSE according to the minimum charging power supported by the vehicle.
- EV Minimum and maximum Energy Request to ensure that mobility needs are met.
- Priority charging to know if the user is allowed overrule smart of bidirectional charging at any time and switch to the maximum charging speed directly.
- Minimum and target state of charge requested by the EV to ensure that mobility needs are met.
- Session ID to link a charging schedule to an active charging transaction.

Finally, the analysis shows the absence of V2X parameters in OCPP 2.0.1. However, this was expected as V2X support is meant to be added in OCPP 2.1.



#### 8.3.3 OCPP 2.1

#### 8.3.3.1 Data Coverage

The version used for this analysis is OCPP 2.1 Draft v0.41 released in 2023.

|                             | Data<br>Object               | Protocol Message                                                                                                                                                                                                                                                                      | Unit<br>/Format | Sender | Remark |
|-----------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|
| Charging<br>Station<br>(CS) | Grid Code<br>Coordinat<br>es | SetChargingProfileRequest::ChargingProfileType::ChargingScheduleType::ChargingSchedulePeriodType::v2xFreqWattCurve::V2XFreqWattEntryType SetChargingProfileRequest::ChargingProfileType::ChargingScheduleType::ChargingSchedulePeriodType::v2xSignalWattCurve::V2XSignalWattEntryType |                 | CSMS   |        |
|                             | EVSE ID                      | GetVariablesResponse with SecurityCtrlr::Identity variable                                                                                                                                                                                                                            |                 | CS     |        |
|                             | Maximum<br>Charging<br>Power | NotifyEVChargingNeedsRequest::V2XChargingParametersType::maxChargePower                                                                                                                                                                                                               | W               | CS     |        |
|                             | Active<br>Power              | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::Power.Active.Import TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::Power.Active.Import ReportChargingProfilesRequest::ChargingScheduleType::ChargingSchedulePeriodType::limit | Wh              | CS     |        |
|                             | Composit<br>e Active         | SetChargingProfileRequest::ChargingProfileType                                                                                                                                                                                                                                        |                 | CSMS   |        |



|    | Charging<br>Profile              |                                                                                                                                                                                                                    |    |    |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
|    | Charged<br>Energy                | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Import.Register TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Import.Register | Wh | CS |
|    | Discharge<br>d Energy            | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Export.Register TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::Energy.Active.Export.Register | Wh | CS |
| EV | Maximum<br>Charging<br>Power     | NotifyEVChargingNeedsRequest::ChargingNeedsType::DCChargingParameter sType::evMaxPower NotifyEVChargingNeedsRequest::ChargingNeedsType::V2XChargingParamete rsType::maxChargePower                                 | W  | CS |
|    | Minimum<br>Charging<br>Power     | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::minChargePower                                                                                                                 | W  | CS |
|    | Maximum<br>Dischargi<br>ng Power | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::maxDischargePower                                                                                                              | W  | CS |



| Minimum<br>Dischargi<br>ng Power   | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::minDischargePower                                                                                                 | W       | CS |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|
| Present<br>SoC                     | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::DCChargingParameter sType::stateOfCharge                                                                                                     | Percent | CS |
| Minimum<br>Energy<br>Request       | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Minimum TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Minimum    | Wh      | CS |
| Target<br>Energy<br>Request        | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Target TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Target      | Wh      | CS |
| Maximum<br>Energy<br>Request       | MeterValuesRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Maximum TransactionEventRequest::MeterValueType::SampledValueType::MeasurandEnumType::EnergyRequest.Maximum    | Wh      | CS |
| V2X<br>Warranty<br>Constraint<br>s | NotifyEVChargingNeedsRequest::ChargingNeedsType::V2XChargingParamete rsType::evMinV2XEnergyRequest NotifyEVChargingNeedsRequest::ChargingNeedsType::V2XChargingParamete rsType::evMaxV2XEnergyRequest | Wh      | CS |

www.scale.eu



|      | Dischargi<br>ng<br>capable    | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::EnergyTransferModeEnumType                       | Wh      | CS |                                                |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------|---------|----|------------------------------------------------|
| User | User ID                       | AuthorizeRequest::idToken                                                                                 |         | CS |                                                |
|      | Departure<br>Time             | NotifyEVChargingNeedsRequest::ChargingNeedsType::departureTime                                            | Seconds | CS |                                                |
|      | Minimum<br>State of<br>Charge | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::evMinEnergyRequest    | Percent | CS | Need<br>conversion<br>with battery<br>capacity |
|      | Target<br>State of<br>Charge  | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::evTargetEnergyRequest | Percent | CS | Need<br>conversion<br>with battery<br>capacity |
|      | Maximum<br>State of<br>Charge | <b>NotifyEVChargingNeedsRequest::</b> ChargingNeedsType::V2XChargingParametersType::evMaxEnergyRequest    | Percent | CS | Need<br>conversion<br>with battery<br>capacity |
|      | Dischargi<br>ng<br>allowed    | AuthorizeResponse::allowedEnergyTransfer                                                                  |         | CS |                                                |



| Priority<br>charging      | UsePriorityChargingRequest::activate                                                                                                                               | Boolean | CS |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|
| Minimum<br>Green<br>Level | <b>NotifyEVChargingScheduleRequest::</b> ChargingProfileType::ChargingScheduleType::SalesTariffType::SalesTariffEntryType::ConsumptionCostType::CostType::costKind |         | CS |

#### 8.3.3.2 Gap analysis

The gap analysis reveals a comprehensive coverage of smart charging and V2X needs within the existing protocol. However, the analysis also brings to light some noteworthy gaps that require attention to enhance the protocol's functionality and adaptability:

- Session ID to link a charging schedule to an active charging transaction.
- V2X state of health to have information related to the remaining budget from the absolute V2X warranty constraints so that they can be included in the optimization problem.
- Tariffs overrule capacity
- Round trip efficiency to avoid injection that can result in low charging power whereby the round-trip efficiency of the on-board inverter could be low.



#### 8.4 CPO – SCSP/MSP communication

This link is used for communication between MSP and CSMS as well as SCSP and CSMS whereby the MSP represents the EV driver within the e-mobility ecosystem. Thereby the MSP should send to the CSMS the driver related via OCPI in the case some actor other than the MSP is the FSP (example departure times, SoC settings, priority charging....). The driver should also be able to be informed on the status of a charging session, on achievements (savings etc) from a (smart) charging session.... This means that the MSP can also acts as a data consumer for certain use cases and get information from the CPO.

#### 8.4.1 OCPI 2.2.1

#### 8.4.1.1 Data Coverage

The version used for this analysis is 2.2.1 published in June 2021.

|      | Data<br>Object                   | Protocol Message                              | Unit<br>/Format | Remark |
|------|----------------------------------|-----------------------------------------------|-----------------|--------|
| Site | Consumpt<br>ion Retail<br>Tariff | Tariff::elements::price_components            |                 |        |
|      | Grid<br>connectio                | EVSE::connectors::max_electric_power          | W               |        |
|      | n capacity                       | EVSE::connectors::max_amperage                | А               |        |
|      | Active grid power                | Session::charging_periods::dimensions::volume | W               |        |
|      | potto.                           | CDR::charging_periods::dimensions::volume     | VV              |        |



|                 | Location                     | Location::coordinates                         |              |                    |
|-----------------|------------------------------|-----------------------------------------------|--------------|--------------------|
|                 | Contracte d power            | EVSE::connectors::max_electric_power          | W            |                    |
|                 | Capacity<br>Tariff           | PriceComponent                                | currency/kWh | Use<br>type=ENERGY |
|                 | Site EAN                     | Session::meter_id                             |              |                    |
|                 |                              | CDR::meter_id                                 |              |                    |
|                 | BSP ID<br>(EAN)              | Location::energy_mix::supplier_name           |              |                    |
| Charging        | EVSE ID                      | EVSE::uid                                     |              |                    |
| Station<br>(CS) |                              | EVSE::evse_id                                 |              |                    |
|                 | Maximum<br>Charging<br>Power | EVSE::connectors::max_electric_power          | W            |                    |
|                 | Active<br>Power              | Session::charging_periods::dimensions::volume | VV           |                    |
|                 | 1 00001                      | CDR::charging_periods::dimensions::volume     | VV           |                    |
|                 | Session<br>ID                | Session::id                                   |              |                    |
|                 | 10                           | CDR::id                                       |              |                    |



|      | Composit              | ActiveChargingProfileResult::profile          |     |
|------|-----------------------|-----------------------------------------------|-----|
|      | e Active              |                                               |     |
|      | Charging              |                                               |     |
|      | Profile               |                                               |     |
|      | Chargad               | Cassianuluula                                 | Wh  |
|      | Charged<br>Energy     | Session::kwh                                  | VVN |
|      | Ellelgy               | CDR::total_energy                             | Wh  |
|      |                       | Session::charging_periods::dimensions::volume | Wh  |
|      |                       | CDR::charging_periods::dimensions::volume     | Wh  |
|      | Discharge<br>d Energy | Session::charging_periods::dimensions::volume | Wh  |
|      | a Energy              | CDR::charging_periods::dimensions::volume     | Wh  |
| EV   | Target<br>Energy      | ChargingPreferences::energy_need              | Wh  |
|      | Request               |                                               |     |
| User | User ID               | Session::cdr_token::uid                       |     |
|      |                       | CDR::cdr_token::uid                           |     |
|      |                       | Session::cdr_token::contract_id               |     |
|      |                       | CDR::cdr_token::contract_id                   |     |
|      |                       | Token::uid                                    |     |
|      |                       |                                               |     |



|           | Token::contract_id                     |         |
|-----------|----------------------------------------|---------|
| Departure |                                        |         |
| Time      | ChargingPreferences::departure_time    |         |
| Dischargi |                                        | boolean |
| ng        |                                        |         |
| allowed   | ChargingPreferences::discharge_allowed |         |
|           |                                        |         |

#### 8.4.1.2 Gap analysis

The gap analysis reveals a comprehensive coverage of smart charging needs within the existing protocol. However, the analysis also brings to light some noteworthy gaps that require attention to enhance the protocol's functionality and adaptability:

- Local frequency to comply with local grid codes.
- Local Voltage to comply with local grid codes.
- Feed-in/injection tariff to optimize the charging cost while meeting charging needs.
- Capacity Period
- Highest measured peak consumption
- BRP ID to facilitate BSP switching processes.
- EV related Data to optimize the charging session and follow the EV constraints.

The analysis also shows the absence of V2X parameters in OCPI 2.2.1. However, this was expected as V2X support is meant to be added to OCPI 3.0. Finally, most of EV-related data is missing. We will discuss the impact on data flow in section 11.4



#### 8.4.2 OCPI 3.0

The EVRoaming Foundation is working on OCPI 3.0 to handle V2X parameters. As there was no available draft version of the specification when this document was written, the analysis was not performed: this study will be done at a later stage if this version is released before the end of the project.

#### 8.5 Conclusion

In conclusion, the assessment of existing and emerging protocols for smart charging reveals that initial gaps identified in earlier versions of protocols have been addressed in their newer iterations. The strides made in refining these protocols demonstrate a commitment to enhancing interoperability and functionality within the e-mobility ecosystem. While most deficiencies pertaining to smart charging have been effectively bridged in the latest releases, a few gaps persist, particularly concerning V2G services.

The analysis also shows the importance of defining the use cases that need to be covered by OCPI. On the one hand, OCPI is already used in the electromobility ecosystem, so it may be relevant to extend the protocol to share flexibility information. On the other hand, it may lead to a complex protocol that can slow down its implementation. In the energy field, some protocols are under development, such as FlexOffer or OpenADR, which may be more adapted to cover the requirements.

Consequently, this analysis is subject to updates following the introduction of OCPI 3.0 but also the final release of OCPP 2.1.



#### 9 Protocols extensions

The proposed solutions focus solely on extending messages without introducing entirely new ones. Furthermore, we adhere to a principle of judiciously incorporating additional fields only when they are absent in the current version of the protocol. If a more recent version of the protocol already includes specific fields, we will not add them to our proposed extensions to avoid redundancy. We also detail how the data currently available can be used to deduce information that is not explicitly present in the messages. These decisions not only ensure streamlined messaging but also promote compatibility with evolving protocol standards.

Regarding ISO 15118 extensions, we decided to propose additions to ISO 15118-2 even if ISO 15118-20 has been released. We see that the deployment of ISO 15118-20 on the field is complex, mostly due to cybersecurity constraints. To maximize the feedback from pilots' experimentation on smart charging use cases, ISO 15118-2 can be used with the proposed customized messages.

This document will not define extensions for OCPI as the required extensions will likely be part of the upcoming new version.

This section lists the impacted messages for each protocol. XML and JSON schemas are available in the appendix to ease the implementation.

#### 9.1 ISO 15118-2

The proposed extensions of ISO 15118-2 messages consider the content of ISO 15118-20 to avoid redundancy. So, we only propose to fill gaps for smart charging use case as V2X use case is covered by a more recent version. The schemas are available in section 13.1.

To optimize the charging process, the EVSE needs to get the maximum and minimum energy request from the EV and the corresponding maximum and minimum SoC. This data can be added to the **ChargeParameterDiscoveryReq** message sent by the EV. As the content of this message is different for AC and DC charging, it shall be added in both cases.

To maximize the delivered powered in AC charging, the EVSE requires the maximum charging power supported by the EV. This can be added in **ChargeParameterDiscoveryReq** message for AC.

#### 9.2 ISO 15118-20

The gap analysis performed in section 8.3 pointed out the need to transmit grid codes to the EV to perform bidirectional charging. There is currently a working group led by CharlN who is working on this topic, so we will not propose a way to fill this gap. This is not an issue for the pilots of SCALE because each pilot can retrieve the constraints from the country where the pilot takes place. We will analyze the content of CharlN proposal when it will be available.

Most of the gaps concern discharging capability. The EVSE needs to get from the EV the V2X state of health and round-trip efficiency. They can be added to **AC\_ChargeParameterDiscoveryReq** and **DC\_ChargeParameterDiscoveryReq**. Then, the EV needs to get the active power measured by the EVSE. This data is currently not available in AC so it shall be added to **AC\_ChargeLoopRes** message.



The messages do not contain explicitly a flag saying if the discharge is allowed by the driver or not. In this case, the EV shall remove bidirectional charging from the supported services sent to the EVSE.

The schemas are available in section 13.2.

## 9.3 OCPP 2.0.1

The proposed extensions of OCPP 2.0.1 messages consider the content of OCPP 2.1 to avoid redundancy. So, we only propose to fill gaps for smart charging use cases as V2X use cases are covered by a more recent version. The schemas are available in section 13.3.

The message mainly impacted is **NotifyEVChargingNeedsRequest** to provide missing EV information to the CPO. The EV minimum charging power for both AC and DC, the EV maximum charging power in AC (already present in DC), the minimum energy request and the corresponding SoC of the EV, its maximum energy request and the targeted SoC at the end of the charging session.

To be able to track the sessions, the CPO also requires the session ID of the current charging session. This information can be obtained using the **TransactionEventRequest** message. When communication with EV is established, the EVSE can add this information to **TransactionEventRequest** with the status Started or Updated.

#### 9.4 OCPP 2.1

As for OCPP 2.0.1, the id of the ongoing sessions is needed by the CPO. It can be added to the **TransactionEventRequest** message in the same conditions described in paragraph 9.3.

Specific information related to discharge capabilities shall be added to the **NotifyEVChargingNeedsRequest** message. The CPO shall know the V2X state of health of the car and the round-trip efficiency.

The schemas are available in section 13.4.

## 9.5 OCPI 2.2.1

This document does not propose extensions for OCPI 2.2.1 because the missing parameters listed in paragraph 8.4.1.2 are not mandatory to implement energy services or because they are needed for V2X use cases. The V2X use cases will be covered by OCPI 3.0.

The local frequency, the local voltage, and the feed-in injection tariff are used in V2X use cases. Then, the capacity period and the highest measured peak consumption are provided by the DSO and the DSO is not part of the actors using OCPI now. The SCSP can retrieve this information using communication channels other than OCPI. The BRP ID can be shared to facilitate the BSP switching processus, so it is not mandatory to deliver the service. This need will be pushed to the current work for OCPI 3.0. Finally, EV related data is missing but the SCSP can indirectly get the EV constraints by getting the charging profile of the session from the CPO. This mechanism is described in section 11.4.



# 10 Required protocols for energy services

In the dynamic landscape of energy services, the efficient exchange of information is paramount for ensuring optimal functionality. To achieve this, the need for systematic mapping of the data required for energy services becomes imperative. Mapping data facilitates a comprehensive understanding of the diverse information elements essential for the seamless operation of energy-related systems. Furthermore, it lays the groundwork for defining the necessary communication protocols that enable the exchange of information among different systems within the energy infrastructure. This process not only enhances the interoperability of various energy services but also establishes a foundation for innovation and integration of emerging technologies, ultimately contributing to a more resilient, responsive, and interconnected energy ecosystem. Based on the gap analysis of section 8, this section aims to define the minimum version of the protocol required to enable the different services.

All the services used in the data analysis of D2.2 can rely on both charging and discharging features. Depending on the pilots' constraints and objectives, they will use only V1G or both V1G and V2G. This document defines the required protocols for the different possible implementations.

#### 10.1 V1G based services

The V1G based services need to either charge or smart charge EVs. To do so, the protocols used shall implement charging control and charging profiles control. The protocols given in the following table support these features.

| Link         | Protocol                     |
|--------------|------------------------------|
| EV <-> EVSE  | ISO 15118-2 √                |
|              | ISO 15118-20 ✓               |
| EVSE <-> CPO | OCPP 1.6 ✓ (with limitation) |
|              | OCPP 2.0.1 ✓                 |
|              | OCPP 2.1 ✓                   |
| CPO <-> FSP  | OCPI 2.2.1 ✓                 |
|              | OCPI 3.0 ✓                   |

ISO 15118-2 both addresses the communication protocol for AC and DC charging and implements security mechanisms unlike DIN 70121. It incorporates authentication and encryption protocols. These mechanisms implement requirements FR.DL.03, FR.DL.11, and FR.CR.06 defined in D2.2.

OCPP 1.6 offers limited charging functionalities: the transition from OCPP 1.6 to OCPP 2.0.1 provides support for advanced charging functionalities. OCPP 2.0.1 introduces features such as dynamic charging,



enabling more flexible and efficient energy management. Dynamic charging allows for real-time adjustments to charging parameters based on factors like grid conditions, energy prices, and user preferences. This capability provides a more intelligent and adaptive charging system, optimizing the use of available resources. Moreover, OCPP 2.0.1 introduces native support of ISO 15118-2 capabilities on authentication and smart charging.

Additionally, OCPP 2.0.1 offers improved security mechanisms compared to OCPP 1.6. OCPP 2.0.1 incorporates enhanced authentication and encryption protocols. These mechanisms are partially implemented in OCPP 1.6 security whitepaper. Implementing one of these two protocols fulfills requirements FR.DL.04, FR.DL.11, and FR.CR.06.

Finally, as OCPP 1.6 will not undergo further evolution according to OCA, we encourage all parties involved to consider transitioning to OCPP 2.0.1 for long-term sustainability.



## 10.2 V2G based services

The V2G based services need to either charge, discharge, smart charge or smart discharge EVs. To do so, the protocols used shall implement charging and discharging control and discharging profiles control. The following table explains the protocols that natively support these features and those who do not.

| Link         | Protocol                       |
|--------------|--------------------------------|
| EV <-> EVSE  | ISO 15118-2 X                  |
|              | ISO 15118-20 ✓                 |
| EVSE <-> CPO | OCPP 1.6 X                     |
|              | OCPP 2.0.1 X                   |
|              | OCPP 2.1 ✓                     |
| CPO <-> FSP  | OCPI 2.2.1 ✓ (with limitation) |
|              | OCPI 3.0 ✓                     |

ISO 15118-20, released in April 2022, is a communication protocol for AC and DC discharging, instead of ISO 15118-2 that only addresses AC and DC charging. As communication link encryption is mandatory in this protocol, the requirements FR.DL.03, FR.DL.11, and FR.CR.06 are fulfilled.

OCPP 2.1 provides the support of discharging capabilities and native integration of ISO 15118-20. This protocol is under development: draft versions are available for OCA members to come up with early implementations.

OCPI 3.0 is currently under development by the EV Roaming Foundation, so there is no sharable draft for early implementers. The missing data for smart charging and the required data for V2X will be given to the EV Roaming foundation as inputs for the new version. So OCPI 2.2.1 shall be used instead with some missing data for V2G services as described in paragraph 8.4.1.



## 11 Data journey

In the intricated e-mobility ecosystem, understanding the dynamic flow of data is paramount for optimizing operations and ensuring seamless interactions among various actors. This section aims to unravel the complex web of data flow within the ecosystem by employing detailed graphs. These graphs depict the journey of data, categorizing it into distinct groups to enhance readability. As we delve into the intricacies of the e-mobility data flow, the primary objective is to illuminate the path from data source to data consumer, elucidating the roles of intermediate systems along the way. By visually mapping out this comprehensive data flow, we seek to provide valuable insights into the interplay of information across the ecosystem.

This section only focuses on data present on Start, Ongoing and End of charge information defined in D2.2 and that can be exchanged using protocols. All data sent using proprietary protocols are not described in this document. For example, the FSP can directly retrieve information from the EV Driver just before a charging session.

The onboarding data are static, so they do not need to be updated all through the charging process. They shall be exchanged before charging sessions.

## 11.1 Data categories

The figures presented in this section aim to explain the data journey. To have comprehensive diagrams, data are grouped into categories based on the links and the usage of these data by the different actors. The data labels come from D2.2. As a reminder, a definition for non-obvious data labels extracted from D2.2 is added.

The following categories have been defined:

#### • Charge Parameters

- EVSE maximum charging power
- o EVSE Active Power
- o EV maximum charging power
- EV minimum charging power
- o EV minimum energy request
- EV target energy request
- o EV maximum energy request
- EV present SoC
- Composite charging schedule: The resulting charging profile as computed by the charging station considering all received charging profiles and local grid limitations.

#### Discharge Parameters

- o EV maximum discharge power
- o EV minimum discharge power
- Round trip efficiency: Round trip efficiency of the onboard inverter for charging and discharging.

#### Mobility Needs

- Departure Time
- Minimum SoC: The minimum state of charge to guarantee an available range for emergency leaves.



- o Target SoC: The state of charge that must be reached at the end of the charging session.
- o Maximum SoC: The state of charge that cannot be exceeded to avoid battery degradation.
- Priority charging: Parameter to indicate whether the driver wants to charge as fast as possible for the active charging session.
- Minimum Green Level: The minimum percentage of local green energy that the user wants for charging to take place at any point in time.
- Tarriff Overrule: Possibility to overrule the tariff calculation.

### • Discharging enabling

- Discharging capable
- o Discharging allowed by user

#### Metering

- Charged Energy
- o Discharged Energy

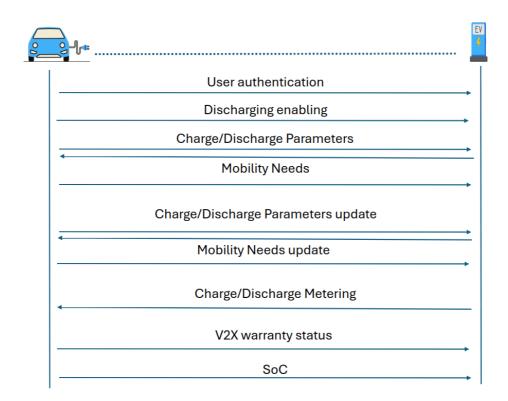
#### V2X Warranty

- V2X Warranty constraints: Absolute discharging limitations overtime imposed by the OEM.
- o V2X state of health: The remaining budget from the V2X warranty constraints.

#### EVSE identification

- o EVSE ID: The unique identifier of EVSE from the charging station.
- o Site EAN: Unique identifier of the grid connection point.

## Capacity constraints


- o Contracted power: Yearly contracted capacity for the grid connection.
- o Capacity Tarriff: Tariff of capacity for the site.
- Capacity period: Period over which the highest peak power is measured for capacity tariff billing purposes.



#### 11.2 EV/EVSE Link

This link relies on ISO 15118. This protocol can be used for the following control topologies:

- EV is the FSP. In this case the EV is the data consumer which requires that the EVSE provides all data to which the EV has no direct access to.
- A third party is the FSP. The EV must provide access to all data related to the EV data object to the EVSE so the EVSE can provide it to the FSP.



Starting and ending data is transmitted once during the charging session by the EV to the EVSE. On this link, the starting data is user authentication, charge parameters and mobility needs. If a bidirectional charge is performed, the discharging enabling and discharge parameters data shall also be sent. The mobility needs are transmitted before the power exchange to allow the charging station to compute a charging schedule according to the EV constraints. The EV driver can be identified through the eMAID of the contract installed into the car if a Plug and Charge authorization is used. Otherwise, another way to identify the user shall be used.

At the end of the session, the EV Status of Charge and possibly the warranty status in case of a bidirectional charging is transmitted.

The data sent during the charging session has different frequency updates, based on ISO 15118 requirements. The ISO 15118 defines two types of timers for the messages: timeouts and performance timings. If a timeout time is exceeded, the related error handling is initiated. If a performance time is exceeded, no error may occur but the probability of causing a timeout is high. We will compute the following delays for both types of timings.



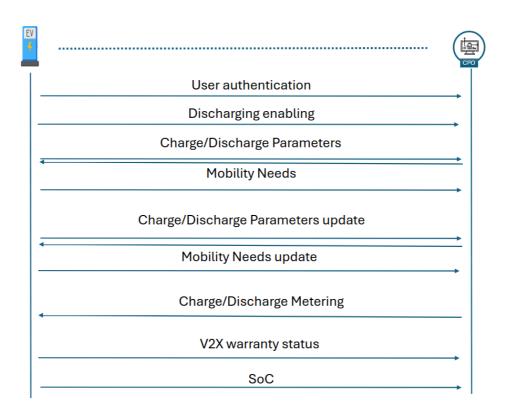
During the charging loop, a message is sent by the EV each 250 milliseconds maximum for DC charging and each 2 seconds maximum for AC charging according to timeout. If we use the performance timers, these delays decrease to 25 milliseconds for DC charging and 1,5 seconds for AC charging. These timings represent the maximum delay for the charging station to be informed of a change in the EV mobility needs.

For the metering information, the EV shall reply within 2 seconds (timeout) or 1,5 seconds (performance) to the charging station.

To change the charging or discharging parameters, we shall differentiate the mechanisms available in ISO 15118-2 and ISO 15118-20. In ISO 15118-2, the session is based on a schedule, this means the EV and the **EVSE** shall renegotiate schedule parameters have changed. In ISO 15118-20, the session can be based on a schedule, but it can also be handled dynamically by the charging station. When a schedule is used, if the EV wishes to change the charging or discharging parameters, it shall use a renegotiation mechanism. To do so, several messages shall be exchanged on the link. For a DC charge, the maximum delay for the EVSE to get the new data is 7 seconds in the worst case (timeout) and 6 seconds (performance time). The EVSE may also wish to change the charging or discharging parameters to apply a change requested by the CPO. The same renegotiation mechanism will be used with the same timing constraints.

When the charge is handled by the charging station, the parameters can be updated when the EVSE receives them from the CPO.




#### 11.3 EVSE/CPO/EMS Link

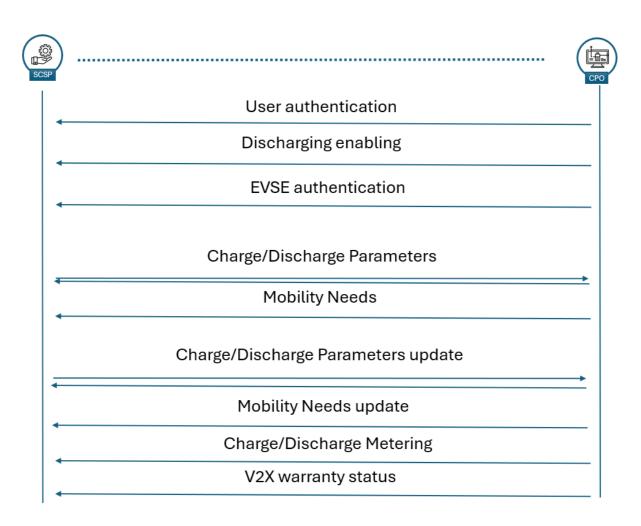
This link relies on OCPP. This protocol can be used for the following control topologies:

- CSMS is the FSP. The EVSE provides EVSE and EV related data to the CSMS and receives back
  charging schedules or setpoints to be executed. It secondly also needs to act as sensor of dynamic
  site related data such as grid measurements towards the CSMS.
- EMS is the FSP. The EVSE provides EVSE and EV related data to the CSMS and receives charging schedules or setpoints to be executed.
- EVSE is the FSP. The EVSE needs to collect site-related data such as electricity tariffs and inform other actors on ongoing charging sessions.

All data received by the EVSE from the EV is transmitted to the CPO. This flow is displayed in the figure below.

From the CPO point of view, the OCPP constraints and the required time by the EVSE to compute EV data shall be added to ISO 15118 timing constraints to get all required information. From the EVSE point of view, the time needed by the CPO to process the received messages can lead to blocking issues. The CPO needs to interact with secondary systems to authorize the charge, retrieve composite schedules and send them to station, etc. ... So, the reactivity of the CPO depends on the reactivity of other systems.




OCPP does not define timeouts or performance timings as defined in ISO 15118. Then, we are not able to estimate the worst-case response time.



## 11.4 CPO/SCSP/MSP Link

This link is used for communication between MSP and CSMS as well as SCSP and CSMS whereby the MSP represents the EV driver within the e-mobility ecosystem. Thereby the MSP should send to the CSMS the driver related data via OCPI in the case some actor other than the MSP is the FSP (example departure times, SoC settings, priority charging....). The driver should also be able to be informed on the status of a charging session, on achievements (savings etc.) from a (smart) charging session.... This means that the MSP can also act as a data consumer for certain use cases and get information from the CPO.

As shown in the gap analysis, the SCSP cannot retrieve the EV charging parameters to compute a charging profile. It can propose a profile based on the driver's departure time and the energy request he requests. Then the SCSP, or any other actor using OCPI and aims to send a charging profile to the station, shall retrieve the active charging profile to consider the EV constraints. Then this profile can be sent to the CPO and then the EVSE to be sent back to the EV. It can only compute schedules based on tariff constraints





## 12 Conclusions

In conclusion, this document has successfully defined extended versions of protocols to enable energy services. The outputs of this report will serve as a guide for pilots to develop interoperable systems and to understand which data they need to handle with the associated constraints.

Recognizing that the standardization process is inherently a lengthy one, it becomes crucial for stakeholders to anticipate future needs and actively provide input to shape upcoming versions of protocols. This forward-thinking approach is essential to ensure that protocols remain adaptable and responsive to the evolving demands of the e-mobility market.

As the sector continues to expand and integrate with emerging technologies, the importance of open protocols cannot be overstated. Their role in maximizing interoperability, keeping an open market, and encouraging competition remains crucial. Stakeholders must remain vigilant, actively participating in the ongoing evolution of protocols to ensure a resilient and future-ready e-mobility ecosystem.

It is important to note that the FSP stands at the top of the chain, gathering information from various actors. The protocols play an indispensable role in facilitating seamless communication and data exchange between these diverse entities. The efficiency and reliability of protocols has become paramount in enabling the FSP to perform its central function effectively.

In essence, this document provides a snapshot of the current state of protocols in the e-mobility sector, recognizing achievements, acknowledging challenges, and showing the importance of collaboration within the industry.



# 13 Appendix

This section contains the updated schemas in XML for ISO 15118 and JSON for OCPP of extended messages and/or data structures.

### 13.1 ISO 15118-2

The structures AC\_EVChargeParameter and DC\_EVChargeParameter are used in ChargeParameterDiscoveryReq.

```
<xs:element name="EVChargeParameter" type="EVChargeParameterType" abstract="true"/>
<xs:element name="AC_EVChargeParameter" type="AC_EVChargeParameterType" substitutionGroup="EVChargeParameter"/>
<xs:complexType name="AC_EVChargeParameterType">
         <xs:complexContent>
                  <xs:extension base="EVChargeParameterType">
                           <xs:sequence>
                                     <xs:element name="EAmount" type="PhysicalValueType"/>
                                     <xs:element name="EVMaxVoltage" type="PhysicalValueType"/>
                                     <xs:element name="EVMaxCurrent" type="PhysicalValueType"/>
                                     <xs:element name="EVMaxPower" type="PhysicalValueType"/>
                                     <xs:element name="EVMinCurrent" type="PhysicalValueType"/>
                                     <xs:element name="EVMaxEnergyRequest" type="PhysicalValueType"/>
                                     <xs:element name="EVMinEnergyRequest" type="PhysicalValueType"/>
                                     <xs:element name="EVMaxSoc" type="PhysicalValueType"/>
                                     <xs:element name="EVMinSoc" type="PhysicalValueType"/>
                           </xs:sequence>
                  </xs:extension>
         </xs:complexContent>
</xs:complexType>
<xs:element name="DC_EVChargeParameter" type="DC_EVChargeParameterType"</pre>
substitutionGroup="EVChargeParameter"/>
<xs:complexType name="DC_EVChargeParameterType">
         <xs:complexContent>
                  <xs:extension base="EVChargeParameterType">
                  <xs:sequence>
                           <xs:element name="DC_EVStatus" type="DC_EVStatusType"/>
                           <xs:element name="EVMaximumCurrentLimit" type="PhysicalValueType"/>
                           <xs:element name="EVMaximumPowerLimit" type="PhysicalValueType" minOccurs="0"/>
                            <xs:element name="EVMaximumVoltageLimit" type="PhysicalValueType"/>
                           <xs:element name="EVEnergyCapacity" type="PhysicalValueType" minOccurs="0"/>
                           <xs:element name="EVEnergyRequest" type="PhysicalValueType" minOccurs="0"/>
                           <xs:element name="EVMaxEnergyRequest" type="PhysicalValueType"/>
                           <xs:element name="EVMinEnergyRequest" type="PhysicalValueType"/>
```



## 13.2 ISO 15118-20

The structures BPT\_AC\_CPDReqEnergyTransferModeType and BPT\_DC\_CPDResEnergyTransferModeType are used respectively in AC\_ChargeParameterDiscoveryReq and DC\_ChargeParameterDiscoveryReq.

```
<xs:element name="BPT_AC_CPDReqEnergyTransferMode" type="BPT_AC_CPDReqEnergyTransferModeType"</pre>
substitutionGroup="AC_CPDReqEnergyTransferMode"/>
<xs:complexType name="BPT_AC_CPDReqEnergyTransferModeType">
         <xs:complexContent>
                  <xs:extension base="AC_CPDReqEnergyTransferModeType">
                                     <xs:element name="EVMaximumDischargePower" type="v2gci_ct:RationalNumberType"/>
                                     <xs:element name="EVMaximumDischargePower_L2" type="v2gci_ct:RationalNumberType"</pre>
                                     minOccurs="0"/>
                                     <xs:element name="EVMaximumDischargePower_L3" type="v2gci_ct:RationalNumberType"</p>
                                     minOccurs="0"/>
                                     <xs:element name="EVMinimumDischargePower" type="v2gci_ct:RationalNumberType"/>
                                     <xs:element name="EVMinimumDischargePower_L2" type="v2gci_ct:RationalNumberType"</p>
                                     minOccurs="0"/>
                                     <xs:element name="EVMinimumDischargePower_L3" type="v2gci_ct:RationalNumberType"</pre>
                                     minOccurs="0"/>
                                     <xs:element name="RemainingV2GEnergy" type="v2gci_ct:RationalNumberType"/>
                                     <xs:element name="RoundTripEfficiency" type="v2gci_ct:RationalNumberType"/>
                            </xs:sequence>
                  </xs:extension>
         </xs:complexContent>
</xs:complexType>
<xs:element name="BPT_DC_CPDResEnergyTransferMode" type="BPT_DC_CPDResEnergyTransferModeType"</pre>
substitutionGroup="DC_CPDResEnergyTransferMode"/>
<xs:complexType name="BPT_DC_CPDResEnergyTransferModeType">
         <xs:complexContent>
```

WWW.SCALE.EU 4

<xs:extension base="DC\_CPDResEnergyTransferModeType">



The structure Dynamic\_AC\_CLReqControlModeType is used in AC\_ChargeLoopRes.

```
<xs:complexType name="BPT_Dynamic_AC_CLReqControlModeType">
<xs:complexContent>
         <xs:extension base="Dynamic_AC_CLReqControlModeType">
                  <xs:sequence>
                            <xs:element name="EVMaximumDischargePower" type="v2gci_ct:RationalNumberType"/>
                            <xs:element name="EVMaximumDischargePower_L2" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EVMaximumDischargePower_L3" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EVMinimumDischargePower" type="v2gci_ct:RationalNumberType"/>
                            <xs:element name="EVMinimumDischargePower_L2" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EVMinimumDischargePower_L3" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EVMaximumV2XEnergyRequest" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EVMinimumV2XEnergyRequest" type="v2gci_ct:RationalNumberType"</pre>
                            minOccurs="0"/>
                            <xs:element name="EvsePresentActivePower" type="v2gci_ct:RationalNumberType"/>
                  </xs:sequence>
         </xs:extension>
</xs:complexContent>
</xs:complexType>
```



## 13.3 OCPP 2.0.1

The structure ACChargingParametersType and DCChargingParametersType are used in NotifyEVChargingNeedsRequest.

```
"DCChargingParametersType": {
                          "description": "DC\_ Charging\_ Parameters \ r\ nurn: x-oca: ocpp: uid: 2:233251 \ r\ nEV\ DC\ charging\ parameters \ r\ n\ r\
                         "javaType": "DCChargingParameters",
                          "type": "object",
                         "additionalProperties": false,
                                                                           "$ref": "#/definitions/CustomDataType"
                                                   "description": "DC_ Charging_ Parameters. EV_ Max. Current\r\nurn:x-oca:ocpp:uid:1:569215\r\nMaximum current
                                                   (amps) supported by the electric vehicle. Includes cable capacity.\r\n",
                                                   "type": "integer"
                                                   "description": "DC_Charging_Parameters. EV_Max. Voltage\r\nurn:x-oca:ocpp:uid:1:569216\r\nMaximum voltage
                                                   supported by the electric vehicle r\n",
                                                   "type": "integer"
                                                   "description": "DC_ Charging_ Parameters. Energy_ Amount. Energy_ Amount\r\nurn:x-
                                                   oca:ocpp:uid:1:569217\r\nAmount of energy requested (in Wh). This inludes energy required for
                                                   preconditioning.\r\n",
                                                   "type": "integer"
                                                   "description": "DC_Charging_Parameters. EV_Max. Power\r\nurn:x-oca:ocpp:uid:1:569218\r\nMaximum power (in
                                                   W) supported by the electric vehicle. Required for DC charging.\r\n",
                                                   "type": "integer"
                                                   "description": "DC_Charging_Parameters. State_Of_Charge. Numeric\r\nurn:x-oca:ocpp:uid:1:569219\r\nEnergy
                                                   available in the battery (in percent of the battery capacity)\r\n",
                                                   "type": "integer",
```



```
"description": "DC_ Charging_ Parameters. EV_ Energy_ Capacity. Numeric\r\nurn:x-
oca:ocpp:uid:1:569220\r\nCapacity of the electric vehicle battery (in Wh)\r\n",
"type": "integer"
"description": "DC_ Charging_ Parameters. Full_ SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569221\r\nPercentage of
SoC at which the EV considers the battery fully charged. (possible values: 0 - 100)\r\n",
"type": "integer",
"description": "DC_ Charging_ Parameters. Bulk_ SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569222\r\nPercentage of
SoC at which the EV considers a fast charging process to end. (possible values: 0 - 100)\r\n",
"type": "integer",
"description": "DC_ Charging_ Parameters. Min_ SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569221\r\n Minimum
percentage of SoC required by the EV at the end of the charging session. (possible values: 0 - 100)\r\n",
"type": "integer"
"description": "DC_Charging_Parameters. Target_SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569221\r\n Target SoC
asked by the EV at the end of the charging session. (possible values: 0 - 100)\r\n",
"type": "integer",
"description": "DC_ Charging_ Parameters. EV_ Min. Power\r\nurn:x-oca:ocpp:uid:1:569215\r\nMinimum Power
(Watt) supported by the electric vehicle.\r\n",
"type": "integer"
"description": "DC_ Charging_ Parameters. EV_ Min. Energy_ Amount\r\nurn:x-oca:ocpp:uid:1:569217\r\n Minimum
Amount of energy requested (in Wh). This inludes energy required for preconditioning. \r\n^{"},
"type": "integer"
```



```
"description": "DC_Charging_Parameters. EV_Min. Energy_Amount\r\nurn:x-oca:ocpp:uid:1:569217\r\n Minimum
                    Amount of energy requested (in Wh). This inludes energy required for preconditioning.\r\n",
                    "type": "integer"
          "evMaxCurrent"
          "evMaxVoltage"
"ACChargingParametersType": {
          "description": "AC_ Charging_ Parameters\r\nurn:x-oca:ocpp:uid:2:233250\r\nEV AC charging parameters.\r\n\r\n",
          "javaType": "ACChargingParameters",
          "type": "object",
          "additionalProperties": false,
                             "$ref": "#/definitions/CustomDataType"
                    "description": "AC_ Charging_ Parameters. Energy_ Amount. Energy_ Amount\r\nurn:x-
                    oca:ocpp:uid:1:569211\r\nAmount of energy requested (in Wh). This includes energy required for
                    preconditioning.\r\n",
                    "type": "integer"
                    "description": "AC_ Charging_ Parameters. EV_ Min. Current\r\nurn:x-oca:ocpp:uid:1:569212\r\nMinimum current
                    (amps) supported by the electric vehicle (per phase).\r\n",
                    "type": "integer"
                    "description": "AC_ Charging_ Parameters. EV_ Max. Current\r\nurn:x-oca:ocpp:uid:1:569213\r\nMaximum current
                    (amps) supported by the electric vehicle (per phase). Includes cable capacity.\r\n",
                    "type": "integer"
                    "description": "AC_ Charging_ Parameters. EV_ Max. Voltage\r\nurn:x-oca:ocpp:uid:1:569214\r\nMaximum voltage
                    supported by the electric vehicle r\n",
                    "type": "integer"
```



```
"description": "DC_ Charging_ Parameters. Min_ SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569221\r\n Minimum
         percentage of SoC required by the EV at the end of the charging session. (possible values: 0 - 100)\r\n",
          "type": "integer",
         "description": "DC_ Charging_ Parameters. Target_ SOC. Percentage\r\nurn:x-oca:ocpp:uid:1:569221\r\n Target SoC
         asked by the EV at the end of the charging session. (possible values: 0 - 100)\r\n",
          "type": "integer",
         "description": "DC_ Charging_ Parameters. EV_ Min. Power\r\nurn:x-oca:ocpp:uid:1:569215\r\nMinimum Power
         (Watt) supported by the electric vehicle.\r\n",
         "type": "integer"
         "description": "DC_Charging_Parameters. EV_Min. Energy_Amount\r\nurn:x-oca:ocpp:uid:1:569217\r\n Minimum
         Amount of energy requested (in Wh). This inludes energy required for preconditioning.\r\n",
         "type": "integer"
         "description": "DC_Charging_Parameters. EV_Min. Energy_Amount\r\nurn:x-oca:ocpp:uid:1:569217\r\n Minimum
         Amount of energy requested (in Wh). This inludes energy required for preconditioning.\r\n",
         "type": "integer"
"energyAmount",
"evMinCurrent"
"evMaxCurrent"
"evMaxVoltage"
```

"\$schema": "http://json-schema.org/draft-06/schema#",
"\$id": "urn:OCPP:Cp:2:2020:3:TransactionEventRequest",



```
"comment": "OCPP 2.0.1 FINAL",
"definitions": {
                                               "description": "This class does not get 'Additional Properties = false' in the schema generation, so it can be extended with
                                               arbitrary JSON properties to allow adding custom data.",
                                                "javaType": "CustomData",
                                                "type": "object",
                                                                                              "type": "string",
                                                                                              "vendorId"
                                                                                              "description": "Session ID. Session\_ID\r\nSession if of the ongoing charging session as defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session is defined in ISO 15118.\r\n", and the ongoing charging session in ISO 15118.\r\n", and the ongoing charg
                                                                                              "javaType": "string",
                                                                                              "type": "string",
                                                                                              "additionalProperties": false
                                                                                              "eventType",
                                                                                              "timestamp",
                                                                                              "triggerReason",
                                                                                              "seqNo",
                                                                                              "transactionInfo"
```



## 13.4 OCPP 2.1

```
"$schema": "http://json-schema.org/draft-06/schema#",
"$id": " urn:OCPP:Cp:2:2022:3:TransactionEventRequest",
"comment": "release candidate",
"definitions": {
          "description": "This class does not get 'Additional Properties = false' in the schema generation, so it can be extended with
          arbitrary JSON properties to allow adding custom data.",
          "javaType": "CustomData",
          "type": "object",
                    "type": "string",
                    "vendorId"
                    "description": "Session ID. Session_ID\r\nSession if of the ongoing charging session as defined in ISO 15118.\r\n",
                     "javaType": "string",
                    "type": "string",
                    "additionalProperties": false
                    "eventType"
                    "timestamp"
                    "triggerReason",
                    "seqNo",
                    "transactionInfo"
```

The structure V2XChargingParametersType is used in NotifyEVChargingNeedsRequest.



```
"type": "object",
"additionalProperties": false,
        "$ref": "#/definitions/CustomDataType"
  "type": "number"
 "type": "number"
        "type": "number"
        "type": "number"
        "type": "number"
        "type": "number"
        "type": "number"
        "type": "number"
        "type": "number"
       "type": "number"
       "type": "number"
    "type": "number"
```



```
"type": "number"
       "type": "number"
      "type": "number"
      "type": "number"
     "type": "number"
"type": "number"
"type": "integer"
     "type": "integer"
      "type": "integer"
       "type": "integer"
      "type": "integer"
       "type": "integer",
       "type": "integer"
      "type": "integer"
```



```
},
"required": [
    "maxChargePower",
    "maxDischargePower"
]
```